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Abstract. We present a physiologically structured lattice model for vascular tumor growth which
accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction
between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor
release, and the coupling between these processes. Simulations of the model are used to investigate
the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth
laws.
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1. Introduction. Cancer is believed to be responsible for one of every five deaths
in Western countries and therefore is among the major killers in the developed world.
The set of diseases categorized under this heading are characterized by major dis-
ruptions in the control mechanisms regulating growth and homeostasis in normal
tissue [6]. In spite of the huge amount of resources that have been devoted to can-
cer research, many aspects remain obscure for experimentalists and clinicians, and
many of the currently used therapeutic strategies are not entirely effective. The more
systematic approach of mathematical modeling, used as a guide to biologists and
clinicians, might help to elucidate the fundamental mechanisms of cancer progression
and either to improve the therapeutic techniques currently used or to stimulate the
development of new strategies.

In fact, modeling cancer has become one of the most active areas within the
mathematical and theoretical biology communities. Many models have been pro-
posed focusing on different aspects. Broadly speaking, we can divide these into two
approaches: continuum models, mathematically formulated in terms of partial differ-
ential equations (PDEs), and cellular automaton (CA) models.

Typically, tumor growth is divided into three stages: avascular growth, angio-
genesis, and vascular growth. In the earliest stage, the avascular stage, the tumor
develops in the absence of blood supply (hence the name). In this first stage typically
the tumor grows up to a maximum size, since its growth is limited by the amount of
nutrients the tumor can obtain through its surface [22]. In the second stage, some of
the cells of this avascular tumor mass produce and release substances called tumor
angiogenic factors (TAFs). TAF diffuses through the surrounding tissue, and, upon
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arrival to the vasculature, it triggers a cascade of events (angiogenesis) which eventu-
ally leads to vascular growth towards the tumor. Once vascularization is completed,
the tumor enters the vascular stage. In this stage, the tumor has access to virtually
unlimited resources, so it can grow beyond its limited “avascular” size, and, also,
it acquires a means of transport for cells that intravasate into the vasculature and
form metastases in any part of the host organism. Thus, whereas in the avascular
phase tumors are basically harmless, once they become vascular they are potentially
fatal.

Among the continuum models, Greenspan proposed some of the earliest mathe-
matical models of tumor growth [33, 34]. His models of avascular tumor growth were
formulated as moving boundary problems, in which the solid tumor grows in sus-
pension. The models do not allow for cellular heterogeneity within the tumor mass,
and the treatment of the mechanical properties of the tissue is rather simplistic. For
extensions of Greenspan’s moving boundary formulation see [1, 2, 12, 47].

Significant progress was made with the introduction of multiphase models. These
models extend the moving boundary approach to incorporate cellular heterogeneity
and the use of more complex mechanical laws to describe the response of the tis-
sue to external forces. Multiphase models have now been used to model avascular
growth [13, 54, 71, 72], vascular growth [10], ductal carcinoma in situ [23], and tumor
encapsulation [38].

The approaches described above draw upon methods from fluid and continuum
mechanics. Models based on different approaches have been successful in describ-
ing other aspects of tumor growth. One approach involves using reaction-diffusion
theory as a modeling framework. Such models have been used to describe invasion
and different aspects of tumor-induced angiogenesis [15, 45, 46, 51]. An alternative
approach which has been used to model interactions between tumor growth and the
immune system is based on kinetic theory and Boltzmann-like equations [9]. For a
more extensive review of continuum modeling of tumor growth see [57].

Whereas continuum models describe cell populations by means of continuous
fields, cellular automata (CAs) deal with the dynamics of discrete elements.1 These
elements take their state from a discrete (finite) space of states and evolve in discrete
space and time. The dynamics of the elements is given in terms of local rules (either
deterministic or probabilistic). Some of the models we describe below incorporate
modifications to the classical definition of a CA. In particular, some of them introduce
diffusive substances (such as nutrients or signaling cues) which are described by means
of continuum fields. These models are categorized as hybrid CAs and are the basis for
the development of the multiple scale models we discuss in this paper. CA models have
been proposed to describe four aspects of tumor growth, namely, avascular growth,
vascular growth, invasion, and angiogenesis.

The model proposed in [20] is formulated as a two-dimensional hybrid CA (or,
more precisely, a lattice-gas model [63]) and reproduces many of the features of avas-
cular tumors in vitro, as, for example, their layer structure.

In [52], a hybrid CA model of tumor growth in the presence of native vasculature
is proposed2 to analyze the role of host vascular density and tumor metabolism on
tumor growth. Tumor cells seem to use the glycolytic metabolism pathway rather

1In the biological context these elements might be either individual cells or (small) clusters of
cells.

2Neither interaction between colony development and vasculature nor angiogenesis is taken into
account.
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than the aerobic metabolism, as normal cells do. One by-product of glycolisis is
the increase of acidity. Since tumor cells are more resistant to acidity than their
normal counterparts, it appears that cancer uses the glycolytic phenotype in order to
increase its invasiveness [29]. Several results regarding the interplay between vessel
density, increased acidity, and tumor progression are obtained. Probably the most
significant results are the presence of a sharp transition between states of initial tumor
confinement and efficient invasiveness when H+ production passes through a critical
value. This has been observed in experiments [29].

In [68] malignant invasion using the extended Potts model [32] is studied. The
authors investigate how malignant cell phenotypes, in particular increased adhesion,
affect cancer invasiveness. Their extended Potts model is based on the minimization
of an energy function by a Monte Carlo method. The model can be simulated to in-
vestigate how the maximum depth of invasion changes as different parameters relating
to cell-to-cell and cell-to-extracellular matrix adhesion and haptotaxis are varied.

A CA model for angiogenesis based on endothelial cell migration in response to
gradients of TAF (chemotaxis) and fibronectin3 (haptotaxis) is proposed in [7]. In this
model vessel tip migration is modeled by a biased random walk derived from finite-
difference discretizations of macroscopic level PDEs. Additional rules are provided
for branching and anastomosis.4 The results can reproduce experimental observations
on solid tumor implants in the cornea of animals [7].

For more extensive reviews of CA modeling of biological systems in general and
tumor growth in particular see [5] and [48], respectively.

In spite of all this effort, much work remains to be done in order to produce
clinically relevant and predictive models. One obstacle that must be overcome is the
intrinsic multiple scale nature of tumor growth. It involves processes occurring over a
variety of time and length scales: from the tissue scale (for example, vascular remod-
eling) to intracellular processes (for example, progression through the cell-cycle). The
structure of a solid, vascularized tumor is very dynamic and heterogeneous. Within
a solid tumor a given region may, at some point, become hypoxic. This situation
triggers biochemical pathways within the cancer cells involved in a number of intra-
cellular responses to hypoxia (vascular endothelial growth factor (VEGF) secretion
and release, transition to quiescence, etc.). VEGF release by starving cells triggers
angiogenesis (i.e., recruitment of new vasculature from the existing one), which re-
sults in the supply of oxygen to the hypoxic regions. Upon successful angiogenesis,
cells do not lack oxygen anymore and emerge from quiescence into the proliferating
state. However, tumor vessels are less stable than their normal counterparts and when
coopted by the growing cancerous tissue they undergo a dematuration process. As a
consequence, these newly formed vessels collapse very easily, and the whole process
starts all over again. This is just an illustrative example of how processes occurring
at very different time and length scales (TLSs) are coupled.

Most of the models described so far, with the exception of those presented in
[20] and [52], focus on one scale. While they may provide valuable insight into pro-
cesses occurring at that scale, they do not address the fundamental problem of how
phenomena at different scales are coupled. In this article, we aim to describe a frame-
work for formulating a multiple scale model of tumor growth capable of integrating a
hierarchy of processes occurring at different scales.

3Fibronectin is a molecule that enhances cell adhesion to the extracellular matrix. It is a com-
ponent of the extracellular matrix and is also expressed by the endothelial cells.

4Anastomosis is the formation of a loop by fusion of two capillaries.
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Fig. 1. TLSs involved in our model [36].

Our aim in this work is to extend our previously developed modeling framework [3]
to include phenomena occurring on a wide range of TLSs and the coupling between
them (see Figure 1).

Similar modeling approaches that integrate different TLSs have been proposed to
describe other biological processes. For example, in physiology, integrative modeling
of the heart is a particularly active area of research [55, 66, 37]. In developmental biol-
ogy, the formation of the skeletal pattern in the avian limb bud has been simulated by
means of a scheme aimed to integrate cell-to-cell interactions, intracellular processes,
and domain-level reaction-diffusion models of genetic regulation [16]. Physiologically
structured models to describe predator-prey systems under a distribution of nutrients
have been proposed [41]. In the particular area of tumor growth a model combin-
ing progression through the cell-cycle and cell migration has been recently proposed
in [53].

This article is structured as follows. In section 2, we present a general descrip-
tion of the model, focusing on its general structure and explaining how the different
elements (corresponding to different TLSs) are coupled together. The next three
sections are devoted to introducing the different elements we include in our model:
the blood flow, the dynamics for the vascular structural adaptation, and the oxygen
transport into the tissue (section 3), the competition between cancer and normal cells
(section 4), and the dynamics of the intracellular processes (cell division, apoptosis,
VEGF secretion) (section 5). Section 6 contains the rules of our lattice model and
incorporates all the elements detailed in sections 3, 4, and 5. In section 7, we discuss
the growth and invasion patterns our model yields in different conditions and some
predictions that may be of interest from the point of view of therapy. In section 8,
we give an account of the growth laws that our model predicts in different situations.
Finally, in section 9, we summarize our results and discuss the limitations of the model
together with future research directions.

2. General structure of the model. The model we present in this article
integrates phenomena occurring on very different TLSs (see Figure 1). These features
include blood flow and structural adaptation of the vascular network, transport into
the tissue of bloodborne oxygen, competition between cancer and normal cells, cell
division, apoptosis, VEGF release, and the coupling between them. Its structure,
therefore, is quite complex. For this reason, before presenting the submodels we use
to describe the different phenomena, we devote this section to explaining the overall
structure of the modeling framework.

The modeling framework we use is an extension of the hybrid cellular automaton,
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Fig. 2. Diagrammatic representation of the layer structure of our model.

which has been used to model several aspects of tumor development (see [52, 20,
3]). Here we extend this concept to account not only for the presence of a diffusive
substance (such as oxygen or glucose) as in previous works but also for intracellular
and tissue-scale phenomena and the coupling between them. To this end, we have
organized our model in three layers: the vascular, the cellular, and the intracellular
layers, which correspond to the tissue, cellular, and intracellular TLSs, respectively
(see Figure 2).

In the top layer, we deal with the structure of the vascular network and blood flow
(see section 3 and [3] for more details). We consider a hexagonal vascular network
(similar to the one observed in liver; see [44]). Each individual vessel is assumed to
undergo structural adaptation (i.e., changes in radius) in response to different stimuli
until the network reaches a stationary state. Through this structural adaptation
process we compute the blood flow rate, the pressure drop, and the haematocrit (i.e.,
relative volume of red blood cells) in each vessel, thus providing the distribution of
haematocrit over the vascular network. Between the vascular layer and the cellular
layer, i.e., coupling the dynamics at the cellular level to blood flow and vascular
adaptation, we have the transport of bloodborne oxygen into the tissue. This process
is modeled by means of a reaction-diffusion equation. The distribution of haematocrit
is the source of oxygen, whereas the distribution of cells (provided by the cellular
layer) gives us the (spatially distributed) sink of oxygen. We give a full account of
the modeling in the vascular layer in section 3.

In the intermediate layer, we focus on cell-cell interactions (competition) and spa-
tial distribution of cells. We consider two types of cells: normal and cancer cells, which
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are modeled as individuals (see section 4 for more details). These two populations
compete for space and resources. Cancerous phenotypes are usually better competi-
tors, which result in the cancer population taking over. One of the aims of this paper
is to identify the key model parameters which may allow this situation to be reversed.
In section 7, we propose one such mechanism. Competition between the two types
of cells is introduced by a very simple rule, which, in turn, couples this middle layer
with the intracellular layer. Apoptosis (programmed cell death) is controlled by the
expression of p53 (whose dynamics is dealt with in the intracellular layer): when the
level of p53 in a cell exceeds some threshold the cell undergoes apoptosis. However,
this threshold is fixed according to the local spatial distribution of cells, which links
the spatial distribution (cellular layer) with the apoptotic process (intracellular layer).
More details of all the rules involved in the cellular dynamics, in particular how these
thresholds are fixed, are given in section 4.

In the bottom layer, we focus on intracellular processes, in particular cell division,
apoptosis, and VEGF secretion. In this layer, we use ordinary differential equations
(ODEs) to model the relevant biochemistry. One issue we focus on is how the external
conditions modulate the dynamics of these intracellular phenomena and, in particu-
lar, how the level of extracellular oxygen affects the division rate or the expression
of p53 (which regulates apoptosis) and the production of VEGF. Since the spatial
distribution of oxygen depends on both the spatial distribution of cells (cellular layer)
and on the distribution of haematocrit (vascular layer), these processes at the intra-
cellular level are linked to the behavior of the other two layers: cell proliferation and
apoptosis alter the spatial distribution of the cells (see Figure 2); the cellular and the
intracellular layers modulate the process of vascular structural adaptation through
another transport process: diffusion of VEGF into the tissue and its absorption by
the endothelial cells lining the vessels (see section 3). A full account of the ODE
models used is given in section 5.

From a more formal point of view, the introduction of the intracellular layer means
that our model actually fails to fall into the category of a CA model. The definition of
a CA implies a discrete-time description of the dynamics of the system [48], whereas
the inclusion of the ODE models for cell division and other intracellular processes
yields a continuous-time description. So, rather than a CA model, our model might
be better categorized as a physiologically structured lattice model.

3. Vascular structural adaptation and blood flow. In this section we give
details of the elements we have included in our blood flow simulations. As in [3],
we take into account three major factors, namely, vascular structural adaptation,
complex blood rheology, and the red blood cell distribution at bifurcations. However,
here we incorporate a new element: the coupling between the metabolic needs of the
tissue and the vascular structural adaptation mechanism.

Figure 3 shows a schematic representation of the vascular network we use for
our simulations. We consider a vascular hexagonal network, similar to those usually
found, for example, in the liver [44]. Although the particular geometry of the vascu-
lar network might have an effect on the pattern of growth predicted by our model, a
thorough investigation of the effect of different vascular geometries on growth is be-
yond the scope of this paper. We have chosen this particular geometry because it has
been observed in real systems, and hence it enables us to show that even in a highly
regular geometry, the complexities of blood flow and vascular dynamics may give rise
to complex behavior. In Figure 3(a) we see that our hexagonal vascular network is
superimposed on a rectangular grid, G ⊂ Z

2. A point in this grid is denoted by the
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Fig. 3. Diagrammatic representation of the layer structure of our vasculature network model.

pair (µ, ν); µ, ν ∈ Z. On this grid we define the quantity N(µ, ν) by

N(µ, ν) =

{
1 if (µ, ν) is a vertex of the vascular network,
0 otherwise.

(3.1)

We assume that the flow in each vessel may be characterized by Poiseuille’s law
[24]. Since Poiseuille’s law implies that the pressure drop in each vessel is proportional
to the flow rate, we can use Kirchoff’s laws to compute the flow rate, Q̇, the pressure
drop, ∆P , the pressure, P , the wall shear stress, τw, and the haematocrit, H, in each
vessel of our network [3].

We label each vessel using the numbering scheme shown in Figure 3(b). If, for
example, we want to refer to the radii of some of the vessels meeting at a point of G
at time t, we use the notation Ri(µ, ν; t); i = 1, 2, 3. Of course, N(µ, ν) = 1 at such a
point. Similar notation is used for the other hydrodynamic quantities.

The initial condition for the vascular adaptation algorithm is a configuration in
which all the vessels have the same radius R0 so that

Ri(µ, ν; t = 0) = R0 ∀µ, ν, i.(3.2)

The remaining hydrodynamic quantities are initially set to zero. As shown in Figure
3(a), a pressure drop ∆PT = PH − PL is imposed between the two top corners of the
network. No flux conditions are imposed elsewhere on the boundary. ∆PT is kept
constant throughout the simulation. Given this initial configuration, we use Kirchoff’s
laws to calculate the hydrodynamic quantities in each vessel. This then provides us
with initial conditions for the structural adaptation algorithm [3].

The vascular system is continually influenced by the flow and the demands of
the surrounding tissue and remodels itself accordingly. Pries et al. formulated an
adaptation mechanism which describes how the lumen radius, Ri(µ, ν; t), is modified
by three such stimuli [60]. The first stimulus that they considered was mechanical.
In particular, Pries et al. proposed that vascular networks adapt themselves in order
to maintain a fixed relationship between transmural pressure and wall shear stress
(hydrodynamic stimulus) [59] (see (3.4)). Structural adaptation of vascular beds also
occurs in response to the metabolic demands of the surrounding tissue. Consequently,
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if the flow in some vessels drops and the tissue becomes poorly supplied with oxygen or
other metabolites, then the vasculature will be stimulated to grow. The third stimulus
is the so-called shrinking tendency, which accounts for the tendency of the radii of
the vessels to decrease in the absence of growth factors that maintain or increase the
size of a given vessel.5 In [60] Pries et al. modeled the effect that these stimuli have
on the vessel radii by using the following equation:

Ri(µ, ν; t + ∆t) = Ri(µ, ν; t) + Ri(µ, ν; t)∆t

(
log

(
τwi(µ, ν; t)

τ(Pi(µ, ν; t))

)

+ km(Vi(µ, ν; t)) log

(
Q̇ref

Q̇i(µ, ν; t)Hi(µ, ν; t)
+ 1

)
− ks

)
.(3.3)

In (3.3) ∆t is the time step, Q̇ref is the minimum flow rate required to maintain
tissue homeostasis, and Km and ks are constants accounting for the intensity of the
metabolic stimulus and shrinking tendency, respectively [60]. For Poiseuille flow,
τw = 4µQ̇/πR3. The first, second, and third terms on the right-hand side of (3.3)
correspond to the hydrodynamic, metabolic, and shrinking tendency stimuli, respec-
tively. τ(Pi(µ, ν; t)) is the wall shear stress-pressure relationship that the vascular
system attempts to maintain. The expression for τ(Pi(µ, ν; t)) that we use was ob-
tained in [60] by fitting to data from the rat mesentery and is given by

τ(Pi(µ, ν; t)) = 100 − 86 [exp (−5000 log(logPi(µ, ν; t)))]
5.4

.(3.4)

We have introduced a modification in the original formulation of the structural
adaptation mechanism. In the third term on the right-hand side of (3.3) we have
introduced a function km(V ). In the original formulation km was a constant. Here
we have introduced a dependence of this parameter on the concentration of VEGF V .
VEGF is produced by many types of cells, including tumor cells, as a response to hy-
poxia. VEGF stimulates proliferation of the endothelial cells lining the vessels. Thus
by assuming km = km(V ) we model directly the interaction between the surrounding
tissue and the vasculature, rather than the effective interaction introduced in [60].
When the tissue is oxygen-starved, VEGF is produced and released. This changes the
structure of the vascular network and the oxygen distribution, which may, in turn,
reduce the rate of production of VEGF. In sections 4 and 5, we explain how our
model cells produce and release VEGF and how it diffuses through the tissue.

A more realistic way of modeling the interaction between the tissue and vascu-
lature would be to introduce angiogenesis, i.e., recruitment of new blood vessels in
response to the angiogenic stimulus (i.e., VEGF). Rather than explicitly introducing
new vessels that sprout from the existing vasculature, we simply increase the radius
of the existing vessels. Basically we are replacing a complex network of vessels by
a single effective cylindrical vessel of an appropriate radius. This approximation is
used extensively in plant sciences to model nutrient uptake: the complex tree-like
root structure is modeled by a single cylinder of an equivalent radius [8, 50, 62]. The
angiogenic response in our model, therefore, leads to an increase in the radii of the
vessels. In particular, we assume that the intensity of the metabolic stimulus in (3.3)
is modulated by the local concentration of VEGF. The particular expression we use

5In [60] other stimuli were considered. We have considered only these three, since they provide
the simplest stable adaptation mechanism.
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to implement this interaction is

km(V ) = k0
m

(
1 +

V

V0 + V

)
.(3.5)

Another factor we consider is blood rheology. Blood is not a simple fluid with
constant viscosity: it is a complex suspension of cells and molecules of a wide range
of sizes. Thus, modeling blood as a Newtonian fluid is a crude approximation. On
the other hand, trying to tackle the problem of blood rheology in all its complexity
would be an overwhelming task. Hence, as in [3], we focus only on the effect of the
red blood cells (RBCs), as they seem to play a major role in blood flow [24].

Due to the presence of RBCs the blood viscosity depends on the haematocrit (H)
and on the radius (R). For a given H, the viscosity depends nonmonotonically on R,
and three different flow regimes may be identified. If R is much greater than the
typical size of a RBC,6 the viscosity is independent of R. As R decreases, the viscosity
also decreases (the Fahraeus–Lindqvist effect). This behavior persists until the vessel
radius is of the order of 15–20 µm. The viscosity then reaches a minimum and,
thereafter, increases if R is similar in magnitude to the radius of a RBC [58]. Pries
et al. have fitted the following explicit expression for the viscosity as a function of
R and H to detailed experimental data [58]:

µblood = µplasma · µrel,

µrel =

[
1 + (µ∗

0.45 − 1)
(1 −H)C − 1

(1 − 0.45)C − 1

(
2R

2R− 1.1

)2
](

2R

2R− 1.1

)2

,

µ∗
0.45 = 6e−0.17R + 3.2 − 2.44e−0.06(2R)0.645 ,

C =
(
0.8 + e−0.15R

)(
−1 +

1

1 + 10−11(2R)12

)
+

1

1 + 10−11(2R)12
,(3.6)

where µrel is the blood viscosity scaled by the viscosity of the plasma.
Since µrel depends on H, the haematocrit distribution is an important factor

when determining the hydrodynamic state of the network. The simplest way to pro-
ceed is to assume that at each bifurcation the distribution of H depends on the flow
velocity in each of the daughter vessels [24]. Roughly speaking, a larger proportion of
the haematocrit from the parent vessel is transported along the faster branch. Addi-
tionally, it has been observed in model experiments with rubber, RBC-shaped pellets
that at bifurcations where the ratio between the velocities of the branches exceeds a
certain threshold, all of the haematocrit enters the faster branch. Combining these
results we assume that, at a bifurcation, the haematocrit is distributed as follows:

Hp = H1 + H2;

H1

H2
= α

v1

v2
, if

v1

v2
< THR;

H1 = Hp, if
v1

v2
> THR,(3.7)

where Hp is the haematocrit in the parent vessel, H1 and H2 are the haematocrits
in the daughter vessels, vi (i = 1, 2) are the average flow velocities on a section
orthogonal to the axis of the daughter vessels and are defined by vi ≡ Q̇i/πR

2
i , α is a

6The average RBC diameter in humans is 7–8 µm.
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(a) (b)

Fig. 4. (a) Distribution of haematocrit in the vascular network without coupling between tissue
and vasculature. (b) Distribution of haematocrit in the vascular network with coupling between
vasculature and development of a colony of normal cells (see section 7.1 for details). In these
figures the greyscale corresponds to the concentration of haematocrit: lighter grey corresponds to
higher haematocrit levels.

phenomenological parameter which accounts for the strength of the asymmetry of the
haematocrit distribution at bifurcations, and THR is the value of the ratio between
the velocities of the branches above, where all of the haematocrit goes to the faster
branch.

The features displayed by the viscosity and the behavior of RBCs at bifurcations
give rise to a highly complex, nonlinear problem, in which the viscosity depends on
the dynamical state of the entire vascular network, including the vessel radii. The
vessel radii, in turn, depend on the hydrodynamic quantities through the adaptation
mechanism [3].

Figure 4 shows results of our blood flow simulations, in particular of the distribu-
tion of haematocrit. Figure 4(a) corresponds to the case analyzed in [3], in which the
evolution of the vasculature is independent of the tissue. Figure 4(b) shows the result
for a case in which there is tissue-vasculature interaction through the aforementioned
dependence of the metabolic stimulus on the VEGF concentration (see section 7.1 for
details). We can see that the distribution of haematocrit is sparser in the second case,
due to this interaction.

The process leading to this tissue-dependent vascular remodeling can be under-
stood by looking at Figure 5. The three panels in the top row show the spatial
distribution of cells (Figure 5(a)), the distribution of oxygen (Figure 5(b)), and the
distribution of VEGF (Figure 5(c)), for an early stage of colony development. Figures
5(d), (e), and (f) (middle row) show the same quantities for an intermediate stage of
colony growth. Figures 5(g), (h), and (i) (bottom row) show the stationary distribu-
tions of these three quantities. Initially, oxygen (which corresponds to the distribution
of haematocrit shown in Figure 4(a)) is concentrated in a localized region. Cells at
a distance from this region are starved of oxygen and respond by producing VEGF
(Figures 5(b) and (c)). In response to VEGF, the vasculature remodels itself, allowing
more oxygen to reach those regions and allowing further growth of the colony (Figures
5(d) and (e)). As a consequence of growth, oxygen is used up, and more cells become
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Fig. 5. Snapshots of the evolution of the colony of cells (left column), oxygen distribution
(central column), and VEGF distribution (right column). In the central and right column figures
the greyscale corresponds to the concentration of oxygen and VEGF, respectively: lighter grey cor-
responds to higher concentrations of oxygen or VEGF.

hypoxic and secrete VEGF (Figure 4(f)). This VEGF promotes further remodeling
of the vascular network. Eventually, a stationary state is reached (Figures 5(g), (h),
and (i)) at which the colony attains the maximum size allowed by the amount of
oxygen available.

4. Cellular dynamics. In this section we discuss the discrete dynamics used
to model the cells. After providing the basic definitions and notation, we will give
an account of how our cells interact with each other and how we formulate the dif-
ferent boundary value problems used to determine the distribution of oxygen and
extracellular VEGF within the tissue domain.

We consider a square lattice, L = Z
2, consisting of a set of elements (nodes)

labeled by their positions r ∈ L, with r = (i, j) i, j ∈ Z (see Figure 6). With each
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Fig. 6. Schematic representation of the lattice used in our simulations.

node of the lattice we associate a neighborhood. For our square lattice the nearest
neighbors neighborhood is given by

N (r) = {r + ck; k = 1, . . . , b},
c1 = (1, 0),

c2 = (0, 1),

c3 = (−1, 0),

c4 = (0,−1).(4.1)

The constant b is the coordination number of the lattice. In our case, b = 4. The
nearest neighbors neighborhood is basically determined by the geometry of the lattice.

Each element is characterized by a state s(r):

s(r) : r ∈ L −→ E ,(4.2)

where E = Z
2 × R

11 is our state space, which in the present case is 13-dimensional.
The first component s1(r) corresponds to the type of cell occupying the element r: it
takes value 0 if it is empty, 1 if it is a cancer cell, 2 if it is a normal cell, and 3 if it
is a vessel. The second component stores the number of divisions that the cell has
undergone (see section 5). This is set to zero for an empty element or an element
occupied by a vessel. Components 3 and 4 are for the local concentration of oxygen
and extracellular VEGF. Components 5–9 store the concentration of the substances
controlling the cell-cycle (see section 5.1). The last three components are occupied
by the cell phase (see section 5.1), the local expression of p53, and the intracellular
concentration of VEGF (see section 5.2).

We have incorporated the vessels (black elements) by mapping the vascular grid G
onto L. Starting with an empty lattice (i.e., s1(r) = 0 for all r) we have performed
the following operation:

s1(4(µ− 1) + 1, 4(ν − 1) + 1) = 3 ∀(µ, ν) ∈ G such that N(µ, ν) = 1.(4.3)

This operation maps the vertices of the vascular network onto L. The next step is
to fill the elements connecting the vertices by a straight line with vessel elements
(s1(r) = 3). Likewise, we assign the values of the hydrodynamic and vascular quan-
tities, in particular the haematocrit, which are associated with the corresponding
vessel.
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Once we have mapped the distribution of haematocrit onto L, we can solve the
boundary value problem (BVP) for the oxygen as in [3]. Assuming that the relaxation
time for the oxygen distribution is much shorter than the characteristic time scale for
the evolution of the cells, we can write

DP∇2P − kP (r)P = 0.(4.4)

The function k(r), which is updated on each iteration of our automaton, depends
on the cell distribution and is defined by

kP (r) =

⎧⎪⎨
⎪⎩

kPN if there is a normal cell at r,

kPC if there is a cancer cell at r,

0 otherwise.

(4.5)

It remains to prescribe appropriate boundary conditions for (4.4), which couple
the dynamics of the tissue with the distribution of haematocrit in the vascular net-
work. Oxygen enters the system by crossing the walls of the vessels, the flux being
given by �J = −DP∇P . Thus we impose the following mixed boundary conditions at
the walls of the vessels:

−DPnw · ∇P = P(Pb − P ),(4.6)

where nw is the unit outward vector, orthogonal to the vessel wall, P is the perme-
ability of the vessel, and Pb is the oxygen level inside the vessel, which is essentially
determined by the haematocrit. Physically, this means that we are assuming that the
rate of leakage of oxygen through the walls of the vessels is equal to its rate of diffu-
sion, meaning that the transport process is in steady state. We also impose no-flux
boundary conditions along the edges of our domain, Ω:

n|∂Ω · ∇P = 0,(4.7)

where n|∂Ω is the unit outward vector, orthogonal to the boundary of the domain.
P is assigned to the state vector as s3(r) = P (r).

Another quantity for which we have to solve a BVP is the distribution of extra-
cellular VEGF. VEGF is secreted by hypoxic cells and released into the extracellular
medium when the intracellular concentration reaches a threshold (see sections 5.2
and 6). We make the same adiabatic approximation for VEGF that we have made
for oxygen. Hence, the equation we have to solve is

DQ∇2Q + kQ(r)Q = 0,(4.8)

where Q is the extracellular VEGF concentration. In this case, we have a source term
given by

kQ(�x) =

⎧⎪⎨
⎪⎩

kQN if there is a normal hypoxic cell at r,

kQC if there is a cancer hypoxic cell at r,

0 otherwise,

(4.9)

where kQN and kQC are constants. For how we determine when a cell becomes hypoxic
we refer the reader to section 6. Q is assigned to the state vector as s4(r) = Q(r).

Details of the numerical procedure used to solve the above BVPs are given in
Appendix A of [3].
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Fig. 7. Two examples showing how thresholds are assigned.

The last issue we deal with here is cell-to-cell interaction. In the present model
the only cell-to-cell interaction we consider is competition between the two popula-
tions of cells. It is known that under certain circumstances cancer cells modify their
environment, providing these cells with a competitive advantage over normal cells, for
example by increasing acidity [28, 29]. Tumor cells show greater resistance to acidic
environments than their normal counterparts. Consequently, they are able (by us-
ing glycolytic metabolism rather than aerobic metabolism) to increase the acidity in
their microenvironment, thus providing neighboring cancer cells with a competitive
advantage over their normal counterparts. In our model, certain critical decisions
(apoptosis, VEGF release, etc.) will be taken when the intracellular concentration
of a particular chemical (see section 5) reaches a critical threshold. The way we
incorporate such competition is by fixing these thresholds appropriately [3].

The threshold for a cell located at r to undergo a particular transition (say, for
example, apoptosis, which, as detailed in section 5, in our model is controlled by
the level of expression of p53) is determined by sampling its neighborhood. If the
neighborhood contains more (or the same number of) cells of the same type as the
one at r, then the threshold is fixed at a value larger than the value we assign if the
neighborhood contains fewer cells of the same type as the one at r. An example is given
in Figure 7. Here, in order to decide whether a normal cell will undergo apoptosis, its
p53 concentration is compared to a threshold value. If the p53 concentration exceeds
the threshold, then the cell will undergo apoptosis. However, to fix the threshold, we
consider the neighborhood of the cell under consideration. If, as is the case in the left
plot of Figure 7, the neighborhood of our normal cell contains more normal cells than
cancer cells, then the threshold value will be fixed to a value higher than that for the
situation shown on the right plot of Figure 7, where the neighborhood contains more
cancer cells than normal cells. As a result, a normal cell is more resistant to apoptosis
when it is surrounded by more normal cells than cancer cells since the amount of p53
that the cell must accumulate in order to undergo apoptosis is larger.

5. Cell division dynamics, apoptosis, and VEGF production. In this
section we give details of the internal dynamics of the elements that are occupied by
a cell. To those sites, where either s1(r) = 1 or s1(r) = 2, we attach a set of ODEs
governing cell division, apoptosis, and VEGF production. These ODEs model the
evolution of the chemicals controlling those processes at the intracellular level, which
determine the “microscopic state” of each element.
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5.1. Cell-cycle: Effects of hypoxia. The dynamics of the cell division cycle
can be affected by the extracellular conditions, in particular by the level of extra-
cellular oxygen: low oxygen concentration (hypoxia) yields alterations in the normal
progression of the cell through its division cycle [14].

The cell-cycle is the set of events which, eventually, leads to cell division. During
the cell-cycle a cell duplicates each of its components, most importantly its chromo-
somes. The cell-cycle is usually divided into four phases (G1, S, G2, and M). The
cell goes through two irreversible transitions during its division process. The first
of these transitions occurs at the end of G1: “Start.” During G1 the cell monitors
its environment and its own size [6, 69]. When the external conditions and the size
of the cell are suitable, the cell commits itself to the process. The second of these
transitions, “Finish,”7 occurs when DNA replication is completed. Once the cell has
checked that the DNA replication process has taken place without error and that
chromatide alignment has been successful, this transition is triggered, and the cell
finally undergoes division into two daughter cells.

During G1, activity of cyclin-dependent kinases (CDKs) is low because the rele-
vant cyclin partners are missing: their production is inhibited, and they are rapidly
degraded. At “Start” cyclin synthesis is promoted, and hence the CDKs are activated.
CDK activity remains high during S, G2, and M, since it is necessary for DNA repli-
cation and other processes occurring during the final stages of the cycle. At “Finish”
a protein complex, the anaphase protein complex, is activated and marks specific tar-
get proteins (such as cyclins) for degradation by the proteolytic machinery of the cell.
This protein complex is composed of a dozen polypeptides and two auxiliary proteins:
Cdc20 and Cdh1. When active, these two proteins present the target proteins to
the core of the complex for labeling. Together, they label cyclins for destruction at
the end of the cycle, allowing the control system to return to G1. Cdc20 and Cdh1
activity is also controlled by cyclin-CDK complexes. However, cyclin-CDKs control
each protein differently: while cyclin-CDK activates Cdc20, it inhibits Cdh1.

Despite the great number of differences between the cell-cycle of cancerous and
normal cells [25], some mechanisms are common to both types of cell. In particular,
regulation of the transition through the check points is accomplished by the CDK
network in both cases.

In normal cells hypoxia simply slows down (arrests) the division process, whereas
in cancer cells it stimulates both arrest and quiescence; i.e., cells go into a latent state
in which most of their functions, including proliferation, are suspended. The ability
of cancer cells to go into a quiescent state provides them with a remarkable resistance
to hypoxia [64].

Building on a previous model [69] and experimental information on the effects of
hypoxia on the cell-cycle [27], we have formulated a model which accounts for arrest
of the transition through the restriction point under hypoxic stress and (some of) the
differences in the response to hypoxia of cancer and normal cells (see [4]). To model
the effect of hypoxia on the cell-cycle we have to consider a new element in the CDK
network [25, 27], the protein p27, which inhibits the activity of the complex Cyc-CDK,
thus inhibiting DNA synthesis. It has been shown that p27 production is stimulated
by hypoxia, thus mediating hypoxia-induced arrest of the G1/S transition. In [27] the
authors were able to gather experimental evidence to construct the picture of hypoxia-
induced G1 arrest: hypoxia causes an overexpression of p27, which downregulates the
activity of the cyclin-CDK complexes, which, in turn, prevents normal progress of the

7We have adopted the nomenclature used by [69].
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cell through the “Start” transition (see [27] and [4] for a complete account). Note
that the model that Tyson and Novak presented in [69] was originally formulated for
yeast. However, yeast has been extensively used as an experimental model system for
the study of the cell-cycle in eukariotic cells, since the basic regulatory mechanisms
are believed to be the same for all eukariotic cells, including mammalian cells [6].
Thus, we have used the model reported in [69], although the actual CDK regulatory
network is more complex in mammalian cells. The experiments reported in [27] on
the effects of hypoxia on the cell-cycle were carried out using fibroblasts.

Based on these observations, the model that we propose (full details given in [4])
is

dx(r)

dt
=

(k′3 + k′′3u(r))(1 − x(r))

J3 + 1 − x(r)
− k4m(r)y(r)x(r)

J4 + x(r)
,(5.1)

dy(r)

dt
= k1 − (k′2 + k′′2x(r) + k′′′2 z(r))y(r),(5.2)

dm(r)

dt
= µ

(
y(r)

y(r) + y0

)
m(r)

(
1 − m(r)

m∗

)
,(5.3)

dz(r)

dt
= χ(m, r) − k′5

P (r)

B + P (r)
z(r),(5.4)

du(r)

dt
= k′6 − (k′6 + k6y(r))u(r),(5.5)

v = 1 − u,(5.6)

where x is the concentration of Cdh1, an antagonist of cyc-CDK, y is the concentration
of cyc-CDK complexes, m is the mass of the cell, z is the concentration of p27,
u is the concentration of nonphosphorylated (RB), and v is the concentration of
phosphorylated RB (RBP). The dependence on r reminds us that this is a local,
internal dynamics.

In (5.4) the production rate for p27, χ(m, r), depends on the type of cell at r:

χ(m, r) =

⎧⎪⎨
⎪⎩

k5 if s1(r) = 1 (i.e., if there is a cancer cell at r),

k5

(
1 − m(r)

m∗

)
if s1(r) = 2 (i.e., if there is a normal cell at r),

0 otherwise.

(5.7)

We have assumed that p27 production is modulated by cell growth in normal cells,
whereas no such control has been assumed to act on p27 production in cancer cells. We
refer the reader to [4] for a detailed discussion of the experimental evidence supporting
this assumption.

We have introduced here a new element with respect to the model presented in [4],
namely, a dependence of the growth rate of the mass of the cell on the concentration
of cyc-CDK complexes (see (5.3)). In general, cell growth is not independent of the
external conditions nor of its own state of development. The dependence of m on y
in (5.3) is intended to account for this. For example, if the level of oxygen is low, the
cell will arrest in G1, and the concentration of cyc-CDK complexes will be kept low
longer. This, according to (5.3), will slow down cell growth and is consistent with the
fact that low levels of oxygen yield a smaller growth rate. However, this modification
changes neither the basic results obtained in [4] nor their mechanisms.

In addition, if s(r) = 1, 2, we define a phase, φ(r), which gives the position of the
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Fig. 8. Division time as a function of the oxygen tension, P . (a) normal cells; (b) cancer cells.

Note the vertical asymptote in (b) at P � 0.003, which is the critical value of the oxygen tension for
the transition to hypoxia in cancer cells. Note that in [20] doubling times for V-79 (cancer) cells are
reported as 10–19 hours (600–1140 minutes) which are in fairly good agreement with the division
times we obtain from our model.

cell in the cell-cycle. Its dynamics is given by

dφ(r)

dt
= η(x(r), y(r)) − sin(φ(r) − φ0),(5.8)

where

η(x(r), y(r)) =

⎧⎨
⎩

0 if y(r) < THR1,
0.5 if y(r) > THR1 and y(r) < THR2,
1.5 if y(r) > THR2 and x(r) < THR3

(5.9)

with THR1 < THR2. Equation (5.8) is such that when η(x(r), y(r)) = 0 there is
a stable fixed point φ∞ = φ0. Since η = 0 when y(r) is very low, this fixed point
corresponds to the cell being in G1. If 0 < η(x(r), y(r)) < 1, then (5.8) has an unstable
fixed point and a stable fixed point φ∞ > φ0. Since this is the situation when y(r)
is bigger than some threshold, this fixed point corresponds to a cell in S-G2-M. If
η(x(r), y(r)) > 1, there are no fixed points of (5.8), which means that the cell has
gone through all the check points and is committed to finishing the cell-cycle. When
φ(r) = 2π the cell divides and the control systems of both the new and old cells are
(re)set to the initial state: x(r) = 0.9, y(r) = 0.001, m(r) = 5, z(r) = 0, u(r) = 0,
φ(r) = 0.

We can count the number of divisions a given cell has undergone, n(r), using φ(r):

n(r) =

∫ ∞

0

δφ(r,t),2π dt.(5.10)

In our lattice element, n is assigned to the state vector as s2(r) = n(r), and
the substances controlling the cell-cycle are stored as s5(r) = x(r), s6(r) = y(r),
s7(r) = m(r), s8(r) = z(r), s9(r) = u(r), s10(r) = v(r), and s11(r) = φ(r).

We now summarize the most significant results of our cell-cycle models of normal
and cancer cells (see [4] for a full analysis). Both models produce hypoxia-induced ar-
rest of the G1/S transition, which yields longer division times (see Figure 8). However,
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if we look at Figure 8(b), where we have shown how the division times for cancer cells
vary with the oxygen tension, P , we observe a vertical asymptote for a given value of
the oxygen tension. Such behavior is not observed in normal cells (see Figure 8(a)).
The origin of this behavior is that the cancer cell model exhibits (hypoxia-induced)
quiescence, i.e., the ability of halting the cell-cycle, rather than merely delaying or
arresting it. Such a behavior is actually observed in cancer cells [4]. In fact, the
ability of cancer cells to enter a quiescent state under hypoxic stress is one of the
main reasons why cancer cells are so remarkably resistant to hypoxia [64]. There
is experimental evidence that quiescent cells are much less susceptible to apoptosis
than proliferating cells [18, 49]. On the other hand, since transition to quiescence is
reversible, cancer cells might wait in the quiescence state (where they are “protected”
from apoptosis) while normal cells are starving and dying. This allows them to wait
until the total (normal+cancer) cell density has diminished and there is more oxygen
available, so they can come back to the proliferative state.

Another feature that emerges from our cancer cell model concerns the behavior
of the concentration of p27 averaged over a period of division:

〈z〉 =
1

TD

∫ TD

0

z(t) dt,(5.11)

and its dependence on k5 and k′5 regulate the production and decay rates of p27 (see
(5.4)). This quantity increases as the ratio k5/k

′
5 increases. On the other hand, the

division time also increases with k5/k
′
5. From this result we can predict that there is

a correlation between the proliferation rate of the cancer cells and 〈z〉 [4]: the latter
decreases when the former increases. This agrees with a recent clinical trial in which
low levels of p27 appear to be a poor prognostic factor [43]. We will return to this in
section 7.2.

5.2. Other responses to hypoxia: Apoptosis and VEGF production.
In this section we account for the intracellular dynamics of the other two hypoxia-
induced cellular responses that we consider, namely, apoptosis and VEGF production.
We formulate models for the levels of expression of the tumor suppressor gene p53
and the intracellular concentration of VEGF.

The p53 gene plays a fundamental role in many biological processes, including
tumor growth [64, 26] and hypoxia-induced cellular responses. In particular, the
wild-type p53 gene mediates apoptosis (programmed cell death) in various situations,
such as DNA damage, hypoxia, the presence of certain cytokines, and metabolic
changes [42]. It has been shown in several studies [64, 31, 65] that cells which have
lost p53 expression (null cells) or have acquired a mutation in the p53 gene (mutant
cells) can survive under hypoxia for longer periods than their wild-type counterparts
due to the decrease in apoptosis caused by abnormal functioning of the p53 gene.
Moreover, it has been shown that tumor cells expressing mutant p53 have an adaptive
advantage over tumor cells expressing wild-type p53 [26].

In addition to cell-cycle arrest, hypoxia induces other cellular responses (see Fig-
ure 9). As shown in Figure 9(a), in both normal and cancer cells, hypoxia stimulates
VEGF production, p53 expression, and apoptosis. In normal cells, p53 expression
stimulates apoptosis and may also inhibit VEGF production [64]. In many cases,
mutations in p53 in cancer cells may lead to a scenario in which p53 apparently up-
regulates VEGF production and stops triggering apoptosis [64]. This last scenario
is the one we consider in our model. Figure 9(b) shows the corresponding hypoxia-
induced response in (mutant) cancer cells. In this case, hypoxia also induces VEGF
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Fig. 9. In addition to cell-cycle arrest, hypoxia induces other cellular responses, which are
schematically shown in this diagram for (a) normal cells and (b) cancer cells. See [64].

production, p53 expression, and apoptosis. However, the role of the p53 gene is differ-
ent: we assume that p53 does not seem to alter the rate of hypoxia-induced apoptosis
and, in contrast to what happens in normal cells, it inhibits VEGF production.

The model we propose to account for levels of expression of p53 is the same for
normal and cancer cells. We assume that the background production rate is constant
and that the decay rate is modulated by the local level of extracellular oxygen:

dp(r)

dt
= k7 − k′7

P (r)

C + P (r)
p(r),(5.12)

where p represents the concentration of p53 within a given cell.
When considering intracellular VEGF, we distinguish between normal and cancer

cells:

dq(r)

dt
= ξ(p, q, r) − k′8

P (r)

D + P (r)
q(r),(5.13)

where q represents the concentration of VEGF and

ξ(p, q, r) =

{
k8 + k′′8

pq
J5+q if s1(r) = 1 (cancer cell),

k8 − k′′8
pq

J5+q if s1(r) = 2 (normal cell).
(5.14)

In (5.13) the dependence on the extracellular level of oxygen accounts for the fact
that VEGF expression is stimulated by hypoxia. Equation (5.14) accounts for the
different regulation of p53 expression in normal and cancer cells (see Figure 9). We
have assumed Michaelis–Menten kinetics for the inhibition (activation) of VEGF by
p53 in normal (cancer) cells.

The intracellular concentration of VEGF is assigned to the automaton state vector
as s12(r) = q(r) and the level of expression of p53 as s13(r) = p(r).

To solve numerically the systems of ODEs we use a four-stage Runge–Kutta
method [56] with an extended stability region [70].

6. Rules for the evolution of our physiologically structured model. The
rules governing the evolution of the automaton elements are as follows.

1. An element that is empty or occupied by a vessel does not evolve directly.
However, an empty element can change its state (to an occupied element)
when cell division takes place in a neighboring element that is occupied by a
cell.
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2. The distribution of oxygen is calculated by solving an appropriate boundary
value problem, as described in section 4.

3. We determine the type of cell in an occupied element from the first component
of its state vector. At each time step we solve the ODEs determining the
internal (cell-cycle, VEGF production, and p53 expression) dynamics of the
cell. The internal dynamics are modulated by the extracellular oxygen, as
explained in section 5.

4. Cells (either normal or cancerous) attempt division when the local phase
φ(r) = 2π.

5. When a cell attempts division, we sample in a region of radius R around the
element.8 If there is only one empty space, then the cell divides, and the new
cell occupies this empty space. If there is more than one empty space, the
new cell goes to the free element with the largest oxygen concentration [52].
If there is no empty space, the cell fails to divide and dies [40].

6. When the oxygen concentration is low, normal cells become sources of VEGF.
This process is controlled in turn by the local intracellular concentration of
VEGF (which is controlled by the concentration of extracellular oxygen and
the level of expression of p53 (section 5.2)). If q(r) is above a threshold value,
qTHR, the cell releases VEGF into the extracellular medium. We determine
the threshold value by sampling the occupation state of its nearest neighbors,
as explained in section 4.

7. Under sustained hypoxia, normal cells die. This process is controlled by the
local level of p53 (which is controlled by the concentration of extracellular
oxygen (section 5.2)). If p(r) is above a threshold value, pTHR, the cell dies.
We determine the threshold value by sampling the occupation state of its
nearest neighbors, as explained in section 4.

8. Cancer cells whose local oxygen concentration is very low enter a quiescent
or latent state, during which most of the cell functions are suspended, in-
cluding proliferation (section 5.1). On entering this state, a clock is started.
The clock is incremented by one unit for each iteration the cell remains in
the quiescent state, i.e., while the oxygen level remains below threshold. If
the clock reaches a given value the cell dies. However, if at some time the
oxygen level goes above threshold the cell returns to the proliferating state
and its clock is reset to zero. Cancer cells in the quiescent state become
sources of VEGF. The transition from the “proliferative” to the quiescent
state is triggered by the local concentration of p27: when z(r) is above a
threshold, zTHR, the cell enters the quiescent state. In this case the thresh-
old is fixed by the internal dynamics, and no sampling of the environment is
done.

9. Elements occupied by normal and cancer cells are sinks of oxygen.
10. Extracellular VEGF diffuses through the tissue according to the BVP formu-

lated in section 4. VEGF eventually reaches the vasculature and interacts
with it through the vascular adaptation mechanism, (3.3). This changes the
structure of the network and therefore the distribution of haematocrit (sec-
tion 3), thereby yielding a new oxygen distribution.

The internal state of each one of the (occupied) elements of the lattice is updated
synchronously. These rules are summarized in the flow chart in Figure 10.

The values of parameters used in our simulations are shown in Tables 1 and 2.

8In the simulations below, R = 1 in element units.
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Fig. 10. Flow chart corresponding to the computer algorithm we have used to implement the
rules presented in section 6.

7. Patterns of growth and invasion: Implications for therapy.

7.1. Growth and invasion. As in [3], we have performed two types of simulated
experiments: the growth of a colony (either a two- or one-species colony) occupying
empty space and the invasion of a healthy tissue by a malignant colony.

In this section we use our model to study how growth and invasion occur in three
different situations, namely, in a homogeneous environment (uniform distribution of
oxygen), in an inhomogeneous environment with vasculature decoupled from the tis-
sue, and, finally, in the most complex situation in which the vasculature and tissue
are coupled. To see the differences between the patterns of growth in the different
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Table 1

Parameter values used for our numerical computations. These values have been used to produce
all the results shown in this paper apart from in Figure 17. For these, we have used k′5 = 0.01
and the value of k5 prescribed by the corresponding value of k5/k′5. The “estimated” values have
been calculated to fit the values of the duplication times of V-79 cancer cells reported by [20]. The
parameters for which we do not have estimates (marked as “see caption” in the table) have been fixed
according to biologically sensible criteria. The parameter values involved in p53 regulation have been
fixed in such a way that normal cells undergo apoptosis when cancer cell enter quiescence [64]. The
parameter values involved in VEGF expression have been fixed in order to have VEGF secretion
before p53-induced apoptosis.

Parameter Value (normal) Value (cancer) Units Source

k1 0.04 0.04 min−1 [69]

k′2 0.5 0.4 min−1 estimated

k′′2 1 1 min−1 [69]

k′′′2 0.25 0.25 min−1 estimated

k′3 1 1 min−1 [69]

k′′3 10 10 min−1 [69]

k′4 35 35 min−1 [69]

µ 0.01 0.01 min−1 [69]

m∗ 10 10 none [69]

J3, J4 0.04 0.04 none [69]

k5 0.1 0.002 min−1 estimated

k′5 0.01 0.01 min−1 estimated

B 0.01 0.01 none estimated

k6 0.01 0.01 min−1 estimated

k′6 0.1 0.1 min−1 estimated

k7 0.002 0.002 min−1 see caption

k′7 0.01 0.01 min−1 see caption

C 0.01 0.01 none see caption

k8 0.002 0.002 min−1 see caption

k′8 0.01 0.01 min−1 see caption

k′′8 0.002 0.002 min−1 see caption

D 0.01 0.01 none see caption

J5 0.04 0.04 none see caption

cases, we focus on a simple case: a one-species colony composed only of normal cells.
However, the results for cancer cells or mixed populations are not significantly differ-
ent.

In Figure 11, we have plotted the size of such a colony as a function of time
under the three conditions we have mentioned. We observe (Figure 11(a)) that in the
case of a homogeneous environment, as in [3], the colony grows in a regular fashion
until it occupies all the space available. In fact, Figure 12 shows how in this case the
colony grows in a symmetric way. By contrast, when the same colony is grown under
an inhomogeneous distribution of haematocrit (see Figure 4), the colony grows to a
saturation size (Figure 11(b)) and follows a pattern of spreading that is much more
heterogeneous (Figures 12(d), (e), and (f)). A similar phenomenon is observed when
we couple vascular structural adaptation and colony development: the colony does not
take over all the space available, and the pattern of spreading is rather heterogeneous
(see Figure 11(c) and Figures 12(g), (h), and (i)). However, one difference is observed:
the colony grows to a significantly larger saturation size. These results are consistent
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Table 2

Parameter values used in our simulations. The values of the zTHR1 and zTHR2 are fixed by the
cell-cycle model. They correspond to the critical stationary value of p27 such that the cancer cells
enter quiescence. The parameters that we have not been able to estimate, marked as “see caption”
in the table, have been fixed in order to meet biologically sensible requirements. We have also
performed sensitivity analysis with respect to these parameters. Our results are robust to changes in
these parameters. pTHR2 is actually fixed by zTHR2 (see the caption of Table 1).

Parameter Value Units Source

km 0.83 s−1 [60]

Qref 40 nl/min [60]

ks 1.79 s−1 [60]

α 0.5 none [24]

THR 2.5 none [24]

DP 2.41·10−5 cm2s−1 [30]

KN 1.57·10−4 mlO2 ml−1s−1 [30]

KT 1.57·10−4 mlO2ml−1s−1 estimated

P 3.0·10−4 cms−1 estimated

qTHR1 (normal cells only) 1.5 none see caption

qTHR2 (normal cells only) 2 none see caption

pTHR1 (normal cells only) 0.08 none see caption

pTHR2 (normal cells only) 0.8 none see caption

zTHR1 (cancer cells only) 0.8 none estimated

zTHR2 (cancer cells only) 0.8 none estimated
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Fig. 11. (a) Growth of a colony of normal cells under a homogeneous distribution of haematocrit
in the vasculature. (b) Growth of a colony of normal cells under an homogeneous distribution of
haematocrit, with vasculature decoupled from tissue. (c) Growth of a colony of normal coupling
between tissue and vasculature. In (a) and (c) the steady state is not shown because the of the
computing time required.

with the ones we obtained from our previous model [3].

Now, we consider the case of a two-species (normal and cancer) cell population.
Two scenarios will be considered: colony growth and invasion. In the first scenario, the
colony is initially composed of roughly 50 percent of each type of cell. In the second
scenario, invasion, an initial colony of cancer cells is placed in a “tissue” composed
of normal cells, empty spaces, and vasculature. The aim is to determine conditions
under which cancer cells can take over the tissue. In both cases we assume that the
vasculature and tissue are coupled.

The results for a two-species colony are shown in Figures 13 and 14. We find that,
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Fig. 12. In (a), (b), and (c) we show three snapshots showing the spatial distribution of
cells for a colony of normal cells growing under a homogeneous distribution of haematocrit (see
Figure 11(a)). In (a) we have plotted the initial condition, (b) corresponds to the colony after
150 days, and (c) corresponds to 310 days. In (d), (e), and (f) we show three snapshots showing the
spatial distribution of cells for a colony of normal cells growing under inhomogeneous distribution
of haematocrit, with vasculature decoupled from tissue (see Figure 11(b)). In (a) we have plotted
the initial condition, (b) corresponds to the colony after 75 days, and (c) corresponds to 150 days.
In (g), (h), and (i) we show three snapshots showing the spatial distribution of cells for a colony
of normal cells growing under inhomogeneous distribution of haematocrit, with vasculature-tissue
coupling (see Figure 11(c)). In (a) we have plotted the initial condition, (b) corresponds to the
colony after 150 days, and (c) corresponds to 310 days.

for the parameter values shown in Tables 1 and 2, our model predicts that cancer cells
rapidly dominate the normal cells. Therefore, the cancer cells are better competitors
than normal cells.

The results shown in Figures 15 and 16 correspond to invasion of a healthy tissue
by a malignant colony. Due to the better competitive character of the cancer cells,
the initial small colony (Figure 16(a)) spreads over a significant part of the tissue
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Fig. 13. (a) Time evolution of the size of the colony for k5/k′5 = 0.2. (b) A close-up of the
initial stages. The dashed line corresponds to normal cells, whereas the solid line corresponds to
cancer cells.

Table 3

Spatial average of p27 protein expressed by cancer cells for three different values of k5/k′5, as
calculated from the patterns shown in Figures 17(d), (e), and (f).

k5/k′5 z

0.2 0.36

0.6 0.67

0.7 0.83

initially occupied by normal cells. In the regions invaded by the cancer cells, normal
cells have been completely eliminated.

7.2. Implications for therapy. As mentioned in section 5.1, a recent clinical
trial has concluded that low levels of p27 in high-grade astrocytomas constitute a
poor prognostic indicator [43]. The authors of this study attribute this feature to
two factors: increased proliferative activity and decreased apoptosis produced by low
levels of p27.

In section 5.1, we have shown that our model of the cell-cycle reproduces the first
of these characteristics: low levels of p27 correlate with smaller division times [4]. In
our model this is achieved by changing the ratio k5/k

′
5: when this ratio increases,

both the concentration of p27 and the division time increase.
We have carried out model simulations introducing into the cell-cycle model for

the cancer cells different values of the ratio k5/k
′
5. We have measured the quantity:

z =
1

Nc

∑
r∈I

z(r)δs1(r),1,(7.1)

which is the spatial average of p27 protein expressed by the cancer cells. In (7.1) Nc is
the total number of cancer cells. Our results show that z increases with k5/k

′
5 (see

Table 3).
On the other hand, if we look at the evolution of the colonies of normal and
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Fig. 14. (a), (b), and (c) show three snapshots of the spatial distribution of cells for a colony
of normal and cancer cells, corresponding to 0, 100, and 310 days, respectively. White elements
represent cancer cells, whereas grey elements correspond to normal cells. Black elements are either
empty or occupied by vessels. (d) shows the distribution of oxygen when the colony has attained
its stationary state. In (d) the greyscale corresponds to the concentration of oxygen: lighter grey
corresponds to higher oxygen levels.

cancer cells (see Figures 17(a), (b), and (c)), we observe that for k5/k
′
5 = 0.2 (Figure

17(a)) the cancer cells take over. This corresponds to the lower level of p27 in Table 3.
When k5/k

′
5 = 0.6 (Figure 17(b)), the stationary state is coexistence between the two

species. If k5/k
′
5 = 0.7 we observe that cancer cells disappear and normal cells take

over. This latter case is the one in which a higher z is obtained.
Figures 17(d), (e), and (f) show the spatial distribution of p27 in cancer cells for

k5/k
′
5 = 0.2, k5/k

′
5 = 0.6, and k5/k

′
5 = 0.7, respectively. We see from these plots

that the concentration of p27 is lower for small values of k5/k
′
5. Figures 18(a) and (b)

show the number of divisions undergone by each cell for k5/k
′
5 = 0.2 and k5/k

′
5 = 0.6,

respectively. This can be interpreted as a map of the mitotic activity of the system.9

If we compare Figures 17(d) and (e) to Figures 18(a) and (b), respectively, we can see
that regions where the mitotic activity is higher correlate with regions where levels of
p27 are lower. We can also see by comparing Figures 18(a) to 18(b) that the mitotic
activity is higher in the first case (smaller k5/k

′
5, i.e., smaller z, according to Table 3).

9Recall that the number of divisions a given cell has undergone is given by (5.10) and is stored
as the component s2(r) of the state vector.
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Fig. 15. Time evolution populations of normal and cancer cells in the simulation of invasion.
The dashed line corresponds to normal cells, whereas the solid line corresponds to cancer cells.
k5/k′5 = 0.2.

Hence, we can see that the change of behavior of our model brought about by
increased k5/k

′
5 is, at least in part, related to a reduced proliferative capacity of

the cancer cells when this parameter ratio is increased. While this agrees with the
observations made in [43], it is not entirely due to a reduced proliferative capacity. If
we compare Figures 8(a) and (b), we see that when k5/k

′
5 increases from 0.2 to 0.7

the proliferation rate of the cancer cells becomes comparable to that of the normal
cells but not much bigger. However, in [4] we have shown that increasing k5/k

′
5 also

increases the tendency to quiescence. On the one hand, this decreases the number
of proliferating cancer cells. On the other hand, some of these quiescent cells will
revert to the proliferative state if the external conditions change appropriately, while
others will eventually die. As a result, the apoptosis rate of cancer cells is increased
by overexpression of p27. This is also in agreement with the results of [43].

8. Growth laws. We now investigate the growth laws exhibited by our model.
This is important since growth laws are used for determining the clinical course of
a malignancy and designing more efficient treatment protocols [19]. In this section
we show that the usual laws deduced from standard population dynamics models
(e.g., logistic or Gompertz), which have been already shown to be not completely
accurate [35], do not reproduce the behavior observed in cancer colonies evolving
according to our model. However, the dynamics of colonies of normal cells fits quite
well with the Gompertz law.

The Gompertz law arises from a population dynamics model in which the growth
rate is proportional to the population size and the decay rate depends exponentially
on it. The solution for such a model is given by

NG(t) = K exp(−λe−
rt

ln K ),(8.1)
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Fig. 16. (a), (b), and (c) show three snapshots of the spatial distribution of normal (white) and
cancer (grey) cells for an invasion simulation, corresponding to 0, 100, and 310 days, respectively.
Black elements are either empty or occupied by vessels. (d) shows the corresponding distribution of
oxygen. In (d) the greyscale corresponds to the concentration of oxygen: lighter grey corresponds to
higher oxygen levels.

where K is the carrying capacity, r is the growth rate, λ = ln N0

K , and N0 is the initial
population size. Therefore the quantity defined by

LG ≡ ln

(
− ln(NG(t)/K)

ln(N0/K)

)
= − r

lnK
t(8.2)

depends linearly on t. We use LG as a reference to determine whether a population
is growing according to the Gompertz law.

8.1. One-species colonies. We have carried out simulations for colonies con-
taining only one species, either normal or cancer cells, and plotted the corresponding
LG. Figure 19(a) shows the quantity LG for a colony of cancer cells. We can see that
LG does not depend linearly on time as we would expect for a population evolving
according to the Gompertz law. On the other hand, Figure 19(b) shows that the
behavior of a colony of normal cells may be well approximated by the Gompertz law.

8.2. Two-species colonies. With two-species colonies we have different situ-
ations to consider. First we consider values of k5/k

′
5 for which the cancer cells take

over. In Figure 19(c) we plot the quantity LG for the cancer cells (the only long-term
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Fig. 17. (a), (b), and (c) show the time evolution of the size of the colonies for k5/k′5 = 0.2,
k5/k′5 = 0.6, and k5/k′5 = 0.7, respectively. Solid lines correspond to cancer cells and dashed lines
to normal cells. (d), (e), and (f) show the corresponding pattern of concentration of p27 in cancer
cells. Lighter grey correspond to higher concentration of p27. We can see that when the ratio k5/k′5
grows the system changes its behavior dramatically: for lower values of k5/k′5, cancer cells take over,
whereas for high values of k5/k′5, normal cells take over (panels (a), (b), and (c)). Concomitantly,
an increase in the concentration of p27 is observed when k5/k′5 increases (panels (d), (e), and (f)).
In (d) and (e) the pattern of expression of p27 in cancer cells is plotted after 310 days. In (f) we
show the same pattern after 30 days.
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Fig. 18. Plots showing the mitotic activity for (a) k5/k′5 = 0.2 and (b) k5/k′5 = 0.6 after
310 days. Lighter grey corresponds to higher mitotic activity. Comparing (a) to Figure 17(d) and
(b) to Figure 17(e), we can see that there is a correlation between high mitotic activity and low
concentrations of p27 and vice versa.
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Fig. 19. LG for colonies of (a) cancer cells and (b) normal cells. N0 = 82 for both cases.
K = 1100 for cancer cells (a) and K = 500 for normal cells (b). In plot (c) we show LG for cancer
cells in a two-species colony with k5/k′5 = 0.2. N0 = 37 for normal cells and N0 = 20. K = 1125 for
cancer cells. LG for (d) cancer cells and (e) normal cells in a two-species colony with k5/k′5 = 0.6.
N0 = 37 for normal cells and N0 = 20. K = 520 for cancer cells (d) and K = 175 for normal
cells (e). Plot (f) shows LG for normal cells in a two-species colony with k5/k′5 = 0.7. N0 = 37 for
normal cells and N0 = 20. K = 500 for normal cells.

survivors in this particular case). As in Figure 19(a) the behavior is not Gompertz-
like.

The second case corresponds to values of k5/k
′
5 such that there is long-term co-

existence between normal and cancer cells (Figures 19(d) and (f)). Once again, the
cancer cells do not behave as predicted by the Gompertz law (Figure 19(d)). How-
ever, the long-term behavior of the normal cells is well described by a Gompertz law
(Figure 19(e)).

The last situation corresponds to values of k5/k
′
5 such that the normal cells take

over. In this case (see Figure 19(f)) the dynamics of LG for the normal cells (the
long-term survivors in this case) fits very well to a Gompertz law.

8.3. Growth laws for cancer cells. The results presented above seem to con-
firm that, in our model, a colony of normal cells in an inhomogeneous environment
grows according to the Gompertz law. However, the cancer cells appear to behave in
a different way:

N(t) =

⎧⎨
⎩

C1 exp(−rt) if t ≤ tcr,
C2t

δ if tcr ≤ t ≤ tsat,
C3 if t ≥ tsat,

(8.3)

where C1, C2, C3, r, and δ are constants. Figures 20(a) and (b) and Figures 20(c)
and (d) illustrate (8.3) for a one-species colony and a two-species colony, respectively.



470 T. ALARCÓN, H. M. BYRNE, AND P. K. MAINI

(a) (b)

8 10 12 14 16 18
time (days)

4

5

6

7

8

ln
(#

 c
e

ll
s
)

2.5 3 3.5 4
ln(time)

4

5

6

7

8

ln
(#

 c
e

lls
)

(c) (d)

25 27.5 30 32.5 35 37.5
time (days)

2

3

4

5

6

7

ln
(#

 c
e

lls
)

3.5 4 4.5 5
ln(time)

4

5

6

7

8

ln
(#

 c
e

lls
)

Fig. 20. (a) Semilogarithmic plot of the initial phase of a one-species (cancer) colony. This plot
shows that, initially, the colony grows exponentially. The growth rate is r = 0.106 day−1. (b) Log-
log plot at a later stage in the progression of the same colony, which shows how the growth changes
from exponential to algebraic. The exponent δ = 0.66. In both cases the correlation coefficient of the
linear regression is larger than 0.99. Solid lines correspond to the fitted curve and dashed lines to
the results of our simulations. (c) Semilogarithmic plot of the initial phase of a two-species colony.
This plot shows that, initially, cancer cells grow exponentially. The growth rate is r = 0.051 day−1.
(d) Log-log plot of a later stage in the progression of the same colony, which shows how the growth
of the cancer cells change from exponential to algebraic. δ = 0.61. In both cases the correlation
coefficients of the linear regression is larger than 0.99. Solid lines correspond to the fitted curve and
dashed lines to the results of our simulations.

Figures 20(a) and 20(c) show that the growth of the colony (in both cases) is approx-
imately exponential at early times. Figures 20(b) and 20(d) show that at late times
the growth of the colonies can be described by an algebraic law. Our estimates of
r and δ, which give an indication of how fast the growth is, are smaller in the case of
the two-species colony due to competition (see the caption of Figure 20).

These results are in qualitative agreement with experimental [11] and simula-
tion [21] results for avascular tumors. The off-lattice simulations reported in [21] are
carried out using a Monte Carlo method. In these simulations cell-to-cell (mechanical)
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interactions are accounted for by a model potential energy. Cells are supposed to be
perfect spheres at the beginning of the cell cycle and deform into a dumbbell shape
as cells enter mitosis. This deformation modifies the total energy of the system, and
the neighboring cells respond by changing their position or orientation in order to
minimize the total energy. Neither in the experiments nor in the simulations were
nutrient levels and its spatial distribution taken into account. In these two papers
algebraic growth is reported for tumor cells growing in vitro. The exponents obtained
in [11, 21] (δ ∼ 3) are different from the ones we obtain from our model. Better
quantitative agreement is obtained with the results of the study presented in [35].
In [35] the authors analyzed the growth law of primary breast cancer from mammog-
raphy screening data, obtaining an algebraic growth law, rather than a Gompertz-like
growth as is usually assumed, with an exponent δ ∼ 0.5.

Since both normal and cancer cells evolve in a qualitatively similar environment,
and the rules for cell-to-cell interaction are the same in both cases, the reasons for
their different temporal behavior must be found in the intracellular dynamics and, in
particular, their cell-cycle dynamics. From this point of view, there are two major
differences between normal and cancer cells: cancer cells divide at a higher rate than
normal cells and cancer cells may become quiescent, whereas normal cells may not.
However, for the situation shown in Figure 17(b), the proliferation rates of the normal
and cancer cells are similar, as we can see from Figure 8. Therefore, the different
behavior of the cancer cells must be due to their ability to delay death by starvation
by entering a quiescent state.

9. Discussion. In this paper we have proposed a multiple scale model for vascu-
lar tumor growth in which we have integrated phenomena at the tissue scale (vascular
structural, adaptation, and blood flow), cellular scale (cell-to-cell interaction), and
the intracellular scale (cell-cycle, VEGF production, and apoptosis). To the best of
our knowledge, this is the first example of such a model for tumor development.

Our integrative approach allows us to analyze the effect on the population of
changes in the intracellular processes of its components. The results produced by
our model are in agreement with clinical studies highlighting the p27 protein as a
prognostic indicator. Furthermore, our model suggests that the p27 protein may be
considered a therapeutic target. Guided by the results of section 7.2, we conclude
that p27 expression could be used to reduce the competitive advantage of the tumor
cells over the normal cells. This could be achieved by altering the normal pattern of
regulation of p27. However, in our model the dynamics of the p27 protein have been
modeled simply. A more accurate model would be required to test our hypothesis.

Another issue we have addressed is to which growth laws our model gives rise.
We have shown that the population of normal cells evolve according to a Gompertz
law. This is an emergent property of our model: we have studied the evolution of a
colony of cells under given environmental conditions and internal division dynamics.
We have nowhere imposed that the death depends exponentially on the size of the
colony. On the other hand, we have shown that the Gompertz law fails to reproduce
the behavior of the cancer cells. Instead, the colonies of cancer cells go through three
different regimes: exponential growth, algebraic growth, and, finally, saturation. This
difference between the two populations is due to the ability of the cancer cells to
enter a quiescent state before dying.10 Further mathematical analysis of populations

10In fact, we have recently become aware of results obtained from continuous models which yield
the same behavior: normal cell growth fits the Gompertz law, whereas cancer cells (which are assumed
to enter quiescence upon starvation) do not [67].
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undergoing quiescence before dying is needed to confirm this point.
A weakness of our model is that the dynamics of p53 and intracellular VEGF

are very simplistic. A more detailed model for their pattern of expression would be
needed in order to produce more reliable results. Also, for our model of the effect of
hypoxia on the cell-cycle we have built up on a model originally proposed for yeast.
This model also needs further refinement.

Another area in which our model could be improved is angiogenesis. Although
we have included tissue-vasculature coupling, we have not introduced new vessel for-
mation, although it might be argued that this is not so important in naturally well-
vascularized tissues, for example the liver. Concerning our treatment of the vascula-
ture and blood flow, there are two points in which our model needs further refinement:
the use of the Poiseuille law for blood flow, which is not valid in very small capillaries,
and the assumption that the vessels are rigid rather than compliant tubes. However,
our model takes into account some properties of real vascular networks and blood
flow that allow us to assess the effects of blood flow heterogeneity. This is particu-
larly important when trying to model drug delivery and evaluate treatment protocols
(see [61] for a particular example).

There are, of course, many other factors that should be included in a more accu-
rate description of the carcinogenic process. For example, we have assumed that can-
cer cells do not migrate, whereas, in practice, cancer cells usually acquire a metastatic
phenotype which enables them to migrate and metastasize to other tissues close to
the primary tumor. Another important factor that should be explored concerns in-
teractions between the tumor and the immune system: in the early stages of tumor
development, when cancer cells have not yet condensed to form a solid tumor, (in-
dividual) malignant cells may be recognized by the immune system and removed [9].
Knowledge of the mechanisms by which the immune response is activated by the pres-
ence of tumor cells and, especially, the reasons for the failure of immune surveillance
are issues that might prove important in the development of new treatments.

Another (rather technical) shortcoming of our model concerns its application to a
more developed stage of tumor growth, where the tumor is likely to comprise millions
of cells rather than thousands of cells, as has been considered in the present study.
In such a case we would need to resort to parallel computing techniques. Although
this certainly implies some degree of complication from the computational point of
view, the present model should not be too difficult to implement in parallel, as the
intracellular dynamics, which is the most time-consuming part, is completely local
(the intracellular dynamics of different elements are only coupled “indirectly” by the
global fields (oxygen, VEGF), with no direct interaction between them). A three-
dimensional version of this model is another issue that would involve the use of more
refined numerical and computational techniques. The major problem would be solv-
ing the reaction-diffusion equations for the global fields (e.g., oxygen or VEGF) in
three dimensions. A possible solution might be to formulate these reaction-diffusion
phenomena in terms of a lattice gas (as in [20]) and using parallel computing tech-
niques.

Many other issues, such as different boundary conditions for the diffusion of oxy-
gen and VEGF and different boundary conditions for the vascular network, could
have been explored. However, in the present article our main aim was to develop our
modeling framework and present some examples of biologically and clinically relevant
issues that can be addressed using this framework.

Most of these limitations will be dealt with in future research.
Finally, our model might also give some insight into the controversy surrounding
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Folkman’s model for tumor therapy: disrupting angiogenesis yields a starving tumor
which eventually dies. In our model, disruption of angiogenesis (by the introduction
of some VEGF-specific antibody), would eliminate the coupling between the growing
tumor and the vasculature. This would not eliminate the tumor (see Figures 12(d),
(e), and (f) and Figures 12(g), (h), and (i)), although it would reduce its size. This
result suggests that combination with other therapies will be necessary for a successful
treatment of vascular tumors.
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